做红外感应开关,要如何避开红外干扰呢?
用8G1K08A做的红外感应开关,用手机刘海出的红外感应头对着单片机的红外感应头时,灯会一直在闪烁要如何避开,有没有大佬解答一下要如何处理呢,#include "reg51.h"
#include "intrins.h"
/************* 本地常量声明 **************/
#define ADC_START (1<<6) /* 自动清0 */
#define ADC_FLAG (1<<5) /* 软件清0 */
#define ADC_SPEED 1 /* 0~15, ADC时钟 = SYSclk/2/(n+1) */
#define RES_FMT (1<<5) /* ADC结果格式 0: 左对齐, ADC_RES: D9 D8 D7 D6 D5 D4 D3 D2, ADC_RESL: D1 D0 000000 */
/* 1: 右对齐, ADC_RES: 000000D9 D8, ADC_RESL: D7 D6 D5 D4 D3 D2 D1 D0 */
#define CSSETUP (1<<7) /* 0~1,ADC通道选择时间 0: 1个ADC时钟, 1: 2个ADC时钟,默认0(默认1个ADC时钟) */
#define CSHOLD (2<<5) /* 0~3,ADC通道选择保持时间(n+1)个ADC时钟, 默认1(默认2个ADC时钟) */
#define SMPDUTY 20 /* 10~31, ADC模拟信号采样时间(n+1)个ADC时钟, 默认10(默认11个ADC时钟) */
/* ADC转换时间: 10位ADC固定为10个ADC时钟, 12位ADC固定为12个ADC时钟. */
#define MAIN_Fosc 22118400L //定义主时钟
sfr ADC_CONTR = 0xbc;
sfr ADC_RES = 0xbd;
sfr ADC_RESL = 0xbe;
sfr ADCCFG = 0xde;
sfr P_SW2 = 0xba;
#define ADCTIM(*(unsigned char volatile xdata *)0xfea8)
sfr AUXR = 0x8E;
sfr INT_CLKO = 0x8F;
sfr P_SW1 = 0xa2;
sfr CCON = 0xd8;
sbit CF = CCON^7;
sbit CR = CCON^6;
sbit CCF2 = CCON^2;
sbit CCF1 = CCON^1;
sbit CCF0 = CCON^0;
sfr CMOD = 0xd9;
sfr CL = 0xe9;
sfr CH = 0xf9;
sfr CCAPM0= 0xda;
sfr CCAP0L= 0xea;
sfr CCAP0H= 0xfa;
sfr PCA_PWM0 =0xf2;
sfr CCAPM1= 0xdb;
sfr CCAP1L= 0xeb;
sfr CCAP1H= 0xfb;
sfr PCA_PWM1 =0xf3;
sfr CCAPM2= 0xdc;
sfr CCAP2L= 0xec;
sfr CCAP2H= 0xfc;
sfr PCA_PWM2 =0xf4;
sfr P0M1 = 0x93;
sfr P0M0 = 0x94;
sfr P1M1 = 0x91;
sfr P1M0 = 0x92;
sfr P2M1 = 0x95;
sfr P2M0 = 0x96;
sfr P3M1 = 0xb1;
sfr P3M0 = 0xb2;
sfr P4M1 = 0xb3;
sfr P4M0 = 0xb4;
sfr P5M1 = 0xc9;
sfr P5M0 = 0xca;
sfr P4 = 0xC0;
sfr P5 = 0xC8;
sfr P6 = 0xE8;
sfr P7 = 0xF8;
sbit IR_OUT = P5^4;
sbit IR_IN = P5^5;
typedef unsigned char u8;
typedef unsigned int u16;
typedef unsigned long u32;
#define PCA0 0
#define PCA1 1
#define PCA2 2
unsigned int ambient_light = 0; // 环境光基准值
unsigned int ir_received = 0;
#define EMIT_DURATION 20 // 发射持续时间(ms)
#define STOP_DURATION 10 // 停止持续时间(ms)
unsigned int emit_phase_samples = 0;// 发射阶段采样值
unsigned int stop_phase_samples = 0;// 停止阶段采样值
unsigned int net_ir_signal = 0; // 净反射信号强度
bit emission_state = 0; // 发射状态: 0=停止, 1=发射
unsigned int timer0_count = 0; // 定时器0计数
void UpdatePcaPwm(u8 PCA_id, u16 pwm_value)
{
if(PCA_id == PCA0)
{
PCA_PWM0 = (PCA_PWM0 & ~0x32) | (u8)((pwm_value & 0x0300) >> 4) | (u8)((pwm_value & 0x0400) >> 9);
CCAP0H = (u8)pwm_value;
}
else if(PCA_id == PCA1)
{
PCA_PWM1 = (PCA_PWM1 & ~0x32) | (u8)((pwm_value & 0x0300) >> 4) | (u8)((pwm_value & 0x0400) >> 9);
CCAP1H = (u8)pwm_value;
}
else if(PCA_id == PCA2)
{
PCA_PWM2 = (PCA_PWM2 & ~0x32) | (u8)((pwm_value & 0x0300) >> 4) | (u8)((pwm_value & 0x0400) >> 9);
CCAP2H = (u8)pwm_value;
}
}
void Timer0_Init(void) //1毫秒@22.1184MHz
{
//定时器0
TMOD = 0x00; //模式0
TL0= 0xcd; //=65536-22.1184M*1000/12*1(1MS)
TH0= 0xf8;
TR0= 1; //启动定时器
ET0= 1; //使能定时器中断
EA= 1;
}
void TM0_Isr() interrupt 1 //1ms
{
timer0_count++;
// 控制发射时序: 发射20ms, 停止10ms
if(emission_state)
{
if(timer0_count >= EMIT_DURATION)
{
emission_state = 0;
timer0_count = 0;
IR_OUT = 0; // 停止发射
}
}
else
{
if(timer0_count >= STOP_DURATION)
{
emission_state = 1;
timer0_count = 0;
IR_OUT = 1; // 开始发射
}
}
}
void Timer1_Init(void)
{
AUXR &= 0xBF; //定时器时钟12T模式
TMOD &= 0x0F; //设置定时器模式
TL1 = 0xE8; //设置定时初始值
TH1 = 0xFF; //设置定时初始值
TF1 = 0; //清除TF1标志
TR1 = 1; //定时器1开始计时
ET1 = 1; //使能定时器1中断
}
void Timer1_Isr(void) interrupt 3
{
// 不再使用Timer1控制发射,改为由Timer0控制
}
// 初始化ADC
void ADC_Init(void)
{
P5M0 &= ~0x20; P5M1 |= 0x20; // P5.5设为高阻输入
ADC_CONTR = 0x80 + 0; //ADC on + channel
ADCCFG = RES_FMT + ADC_SPEED;
P_SW2 |=0x80; //访问XSFR
ADCTIM = CSSETUP + CSHOLD + SMPDUTY;
}
u16 Get_ADC10bitResult(u8 channel)
{
ADC_RES = 0;
ADC_RESL = 0;
ADC_CONTR = 0x80 | ADC_START | channel;
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
while((ADC_CONTR & ADC_FLAG) == 0) ; //等待ADC结束
ADC_CONTR &= ~ADC_FLAG;
#if ((RES_FMT & (1<<5)) != 0)
return ((u16)ADC_RES * 256 + (u16)ADC_RESL); //右对齐
#else
return ((u16)ADC_RES * 4 + (u16)(ADC_RESL >> 6)); //左对齐
#endif
}
#define SUM_LENGTH 16 /* 平均值采样次数 最大值16 */
/***********************************
查询方式做一次ADC, chn为通道号, chn=0~3通道对应P3.0~P3.3, 4通道-->P5.4, 5通道-->P5.5, 15通道为内部1.19V基准电压做输入的ADC值.
***********************************/
unsigned int ADC_convert(u8 chn)
{
u16 j;
u8 k; //平均值滤波时使用
Get_ADC10bitResult(chn); //参数i=0~11,15,查询方式做一次ADC, 切换通道后第一次转换结果丢弃. 避免采样电容的残存电压影响.
Get_ADC10bitResult(chn); //参数i=0~11,15,查询方式做一次ADC, 切换通道后第二次转换结果丢弃. 避免采样电容的残存电压影响.
for(k=0, j=0; k<SUM_LENGTH; k++)
j += Get_ADC10bitResult(chn); // 采样累加和 参数0~15,查询方式做一次ADC, 返回值就是结果
j = j / SUM_LENGTH; // 求平均
return j;
}
// 在全局变量中定义滤波系数和滤波后的值
#define ALPHA 0.2f// 滤波系数 (0 < ALPHA < 1)。值越小越平滑,但响应也越慢。
unsigned int filtered_ir_value = 0;
void main()
{
P0M0 = 0x00;
P0M1 = 0x00;
P1M0 = 0x00;
P1M1 = 0x00;
P2M0 = 0x00;
P2M1 = 0x00;
P3M0 = 0xe0;
P3M1 = 0x00;
P4M0 = 0x00;
P4M1 = 0x00;
P5M0 = 0x00;
P5M1 = 0x00;
P3M0 |= 0x08; P3M1 &= ~0x08; //P3.3推挽模式
P3M0 |= 0x04; P3M1 &= ~0x04; //P3.2推挽模式
P_SW1 = 0x00; //ECI/P1.2, CCP0/P1.1, CCP1/P1.0, CCP2/P3.7
CCON = 0x00;
CMOD = 0x08; //PCA 时钟为系统时钟
CL = 0x00;
CH = 0x00;
//-- 10 位 PWM--
CCAPM0 = 0x02; //PCA 模块 0 为 PWM 工作模式
PCA_PWM0 = 0xc0; //PCA 模块 0 输出 10 位 PWM
CCAP0L = 0;
CCAP0H = 0;
CCAPM1 = 0x02; //PCA 模块 1 为 PWM 工作模式
PCA_PWM1 = 0xc0; //PCA 模块 1 输出 10 位 PWM
CCAP1L = 0;
CCAP1H = 0;
CR = 1; //启动 PCA 计时器
//定时器
Timer0_Init();
Timer1_Init();
UpdatePcaPwm(PCA1,1023);
UpdatePcaPwm(PCA0,1023);
ADC_Init();
ambient_light = ADC_convert(5);
while (1)
{
// 同步采样策略
if(emission_state && timer0_count > EMIT_DURATION/2)
{
// 在发射阶段后期采样 (包含自身发射的反射信号 + 环境光)
emit_phase_samples = ADC_convert(5);
}
else if(!emission_state && timer0_count > STOP_DURATION/2)
{
// 在停止发射阶段采样 (主要是环境光)
stop_phase_samples = ADC_convert(5);
// 计算净反射信号强度
if(emit_phase_samples > stop_phase_samples)
{
net_ir_signal = emit_phase_samples - stop_phase_samples;
}
else
{
net_ir_signal = 0;
}
// 使用净反射信号进行滤波
filtered_ir_value = (unsigned int)((1 - ALPHA) * filtered_ir_value + ALPHA * net_ir_signal);
// 环境光补偿:使用停止阶段的采样值作为环境光基准
ambient_light = stop_phase_samples;
// 手势检测:基于净反射信号
if(net_ir_signal > 83) // 阈值可能需要调整
{
UpdatePcaPwm(PCA1,0);
UpdatePcaPwm(PCA0,0);
}
else
{
UpdatePcaPwm(PCA1,1023);
UpdatePcaPwm(PCA0,1023);
}
}
}
}
红外感应开关程序供参考:
15系列单片机主时钟频率11.0592MHz(8G系列需要移植),用38KHz接收头,感应距离>100mm,认假率过高调大Protect,拒真率过高调小Protect
#include <STC15F2K60S2.H>
#include <intrins.h>
#define RXD P30
#define TXD P31
#define IRIN P32
#define IROUT P33
#define OUT P34
#define Pluse 20 //Pluse number
#define Protect 2 //Protect level:1~7
/*----------------------------延时10us@STC-Y5@11.0592MHz----------------------------*/
void Delay_10us(void)
{
unsigned char i;
_nop_();
i=25;
while(--i);
}
/*----------------------------延时x10us----------------------------*/
void Delay_x10us(unsigned char x)
{
while(x--)
Delay_10us();
}
/*----------------------------延时10ms@STC-Y5@11.0592MHz----------------------------*/
void Delay_10ms(void)
{
unsigned char i,j;
i=108;
j=145;
do
{
while(--j);
}while(--i);
}
/*----------------------------延时x10ms----------------------------*/
void Delay_x10ms(unsigned char x)
{
while(x--)
Delay_10ms();
}
void PWM_Delay(void)
{
unsigned char i;
_nop_();
_nop_();
i=20;
while(--i);
}
void PWM(void)
{
unsigned char i;
for(i=0;i<Pluse;i++)
{
IROUT=0;
PWM_Delay();
IROUT=1;
PWM_Delay();
IROUT=1;
PWM_Delay();
}
}
void Init(void)
{
}
void main(void)
{
bit flag;
unsigned char i,a,b;
Init();
while(1)
{
a=0x00;
b=0x00;
for(i=0;i<Protect;i++)
{
flag=0;
PWM();
if(!IRIN)
flag=1;
else
flag=0;
Delay_x10us(50); //Do not adjust
if(IRIN&&flag)
a|=0x01<<i;
b|=0x01<<i;
Delay_x10ms(5); //Minium:40ms
}
if(a==b)
OUT=0;
else
OUT=1;
}
}
DebugLab 发表于 2025-9-9 20:16
红外感应开关程序供参考:
15系列单片机主时钟频率11.0592MHz(8G系列需要移植),用38KHz接收头,感应距离 ...
感谢你的回答,但是用我用的是红外对管,不是38KHZ的接收头,所以我用了ADC采集接收头的数据对比,我用的是STC8G1K08A,没有PWM,只有PCA,用PCA的PWM好像不能这么准确调到38KHZ,只能用定时器去定到38KHZ 应该是做反射式感应开关吧? 简单的直接利用ADC采样光敏管接收到电平值做门限判断,确实很容易受到外部干扰.
想要抑制干扰,一是选择红外对管的波长,避开常见红外遥控器用的波长值,配合专用滤色片.这是最经济的办法.
如果无法避开遥控波长,就要靠其他方法抑制干扰,
可以使用监视环境干扰的方法.忽略掉遥控信号,利用遥控器发射间隙来识别自己的有效信号.
也可以采用远离38khz脉冲调制,接收前端增加窄带滤波器选频,然后检波成直流再做门限判断.电路比较复杂.
不是必须的38khz,你只要提高模拟量采集速度,在瞬时,能打开红外管采集,关闭红外进行采集。多采集几次。打开红外有信号,关闭红外就没有信号,就是感应到了。如果关闭红外还是有信号,说明是外接的红外在干扰。外部红外不可控,也可以在关闭红外的时候采集一次,这个作为浮动基准,然后再和打开红外采集的数做对比,打开红外有遮挡,肯定还会有数据变化,就认为是有遮挡。速度尽可能快的采集adc就行。
页:
[1]