AI8051U开发记录三:ADC数据实时显示和RTC功能冲突问题。
最近在做一个四通道的电压电流表。通ADC采样,通过SPI把数据显示在屏幕上,。
后来我想把电压电流表增加一个时钟功能。实际测试发现不太理想。由于ADC采样是实时显示在屏幕上,好像对RTC功能会有影响。
如果把ADC SPI关闭了,则RTC输出的中断基本上正确,
只要打开的ADC和SPI。 RCT的秒中断不会变得毫规律,不是1S中断一次。
试过用内部时种和外部两种方式,都一样。
针对“AI8051U开发记录三:ADC数据实时显示和RTC功能冲突问题”的情况,以下是专业分析与建议:
在使用AI8051U进行四通道电压电流表开发过程中,ADC采样与SPI通信用于实时数据显示,是系统的核心功能之一。然而,在后续增加RTC(实时时钟)功能后,发现RTC的秒中断出现不规律现象,特别是在开启ADC与SPI时,中断间隔明显偏离预期的1秒周期。
一、问题现象分析
根据测试结果,当关闭ADC与SPI功能时,RTC中断表现正常;但一旦开启ADC与SPI,RTC的秒中断变得不规则,表现为中断频率不稳定,甚至出现多秒未触发或短时间内多次触发的情况。这一现象表明,ADC与SPI的运行可能对RTC的计时机制造成了干扰。
二、可能原因分析
1. 时钟资源冲突
AI8051U内部通常共享一个主时钟源,若ADC与SPI模块使用了相同的时钟分频配置,可能导致系统时钟分配不均,进而影响RTC的稳定性。尽管尝试了内部与时钟源,但结果一致,说明该问题可能并非由时钟源本身引起,而是时钟分配逻辑或优先级设置存在问题。
2. 中断优先级冲突
ADC与SPI在数据传输过程中可能会产生中断请求,而RTC同样依赖于中断机制来实现定时功能。若ADC/SPI中断优先级高于RTC中断,可能导致RTC中断被延迟处理,从而造成时间偏差。
3. CPU资源占用过高
ADC采样与SPI通信属于高频操作,尤其在实时显示场景下,系统需频繁进行数据采集与传输,这可能占用大量CPU资源,导致RTC任务无法按时执行,从而引发时间不准的问题。
4. 电源或时序抖动
在高频率操作下,电源波动或时序抖动也可能对RTC的稳定运行造成影响,尤其是在ADC与SPI同时运行时,系统功耗波动较大,可能间接影响RTC的精度。
三、解决方案建议
1. 优化中断优先级设置
检查并调整ADC、SPI与RTC中断的优先级,确保RTC中断具有足够的响应优先级。可尝试将RTC中断设置为最高优先级,避免被其他中断抢占。
2. 独立时钟源配置
若AI8051U支持,可尝试为RTC配置独立的低速时钟源(如32kHz晶体),以减少与其他模块时钟资源的冲突,提高RTC的稳定性。
3. 降低ADC采样率或采用DMA传输
若ADC采样频率较高,可考虑适当降低采样率,或使用DMA方式进行数据传输,减少CPU干预,从而释放系统资源,提高RTC任务的执行效率。
4. 优化代码结构,提升任务调度效率
确保ADC采样与SPI通信任务不会长时间阻塞系统,可采用任务调度机制或非阻塞方式处理数据传输,避免影响RTC的定时任务。
5. 电源与硬件优化
检查系统供电是否稳定,必要时增加滤波电容或使用更稳定的电源方案,减少因电源波动带来的时钟误差。
四、结论
综上所述,ADC与SPI的实时数据传输可能对RTC的稳定性造成一定影响,主要源于时钟资源竞争、中断优先级冲突以及系统资源占用过高等因素。通过合理配置中断优先级、优化任务调度、使用独立时钟源等手段,可以有效缓解该问题,提升系统的整体稳定性和可靠性。
建议在后续开发中,进一步测试不同配置下的系统行为,并结合实际应用场景进行针对性优化,以确保各功能模块的协同运行。
[本文内容由国芯人工智能辅助生成,仅供参考] 仅打开ADC或SPI,再同时打开RTC试一下,看看具体是ADC还是SPI影响了RTC
是否使用了中断,检查一下中断号扩展插件或isr.asm是否正常工作 中断时长不一样 无用科技 发表于 2025-8-6 17:47
中断时长不一样
可能是中断阻塞了,不要在中断内执行耗时操作
用这个程序架构
#include <AI8051U.H> //包含AI8051U的头文件
#include "intrins.h" //使用_nop_()函数所必须要包含的头文件,
//否则延时函数中调用的_nop_()函数没有被头文件引用过来,
//会导致编译器找不到这个而函数而报错。
unsigned char int0_flag = 0; //定义1个位变量,INT0事件位变量标志,记录INT0已产生中断
// 供主循环查询INT0是否已产生中断,在主循环中处理INT0的中断事件任务,不堵塞其他中断
unsigned char int1_flag = 0; //定义1个位变量,INT1事件位变量标志,记录INT1已产生中断
// 供主循环查询INT1是否已产生中断,在主循环中处理INT1的中断事件任务,不堵塞其他中断
unsigned char int2_flag = 0; //定义1个位变量,INT2事件位变量标志,记录INT2已产生中断
// 供主循环查询INT2是否已产生中断,在主循环中处理INT2的中断事件任务,不堵塞其他中断
unsigned char int3_flag = 0; //定义1个位变量,INT3事件位变量标志,记录INT3已产生中断
// 供主循环查询INT3是否已产生中断,在主循环中处理INT3的中断事件任务,不堵塞其他中断
unsigned char t0_flag = 0; //定义1个位变量,T0事件位变量标志,记录定时器0已产生中断
// 供主循环查询定时器0是否已产生中断,在主循环中处理定时器0的中断事件任务,不堵塞其他中断
unsigned char t1_flag = 0; //定义1个位变量,T1事件位变量标志,记录定时器1已产生中断
// 供主循环查询定时器1是否已产生中断,在主循环中处理定时器1的中断事件任务,不堵塞其他中断
unsigned char t3_flag = 0; //定义1个位变量,T3事件位变量标志,记录定时器3已产生中断
// 供主循环查询定时器3是否已产生中断,在主循环中处理定时器3的中断事件任务,不堵塞其他中断
unsigned char t4_flag = 0; //定义1个位变量,T4事件位变量标志,记录定时器4已产生中断
// 供主循环查询定时器4是否已产生中断,在主循环中处理定时器4的中断事件任务,不堵塞其他中断
unsigned char uart1_txflag = 0; //定义1个位变量,UART1事件位变量标志,记录UART1已产生发送中断
// 供主循环查询UART1是否已产生发送中断,在主循环中处理UART1的中断事件任务,不堵塞其他中断
unsigned char uart1_rxflag = 0; //定义1个位变量,UART1事件位变量标志,记录UART1已产生接收中断
// 供主循环查询UART1是否已产生接收中断,在主循环中处理UART1的中断事件任务,不堵塞其他中断
unsigned char uart2_txflag = 0; //定义1个位变量,UART2事件位变量标志,记录UART2已产生发送中断
// 供主循环查询UART2是否已产生发送中断,在主循环中处理UART2的中断事件任务,不堵塞其他中断
unsigned char uart2_rxflag = 0; //定义1个位变量,UART2事件位变量标志,记录UART2已产生接收中断
// 供主循环查询UART2是否已产生接收中断,在主循环中处理UART2的中断事件任务,不堵塞其他中断
unsigned char uart3_txflag = 0; //定义1个位变量,UART3事件位变量标志,记录UART3已产生发送中断
// 供主循环查询UART3是否已产生发送中断,在主循环中处理UART3的中断事件任务,不堵塞其他中断
unsigned char uart3_rxflag = 0; //定义1个位变量,UART3事件位变量标志,记录UART3已产生接收中断
// 供主循环查询UART3是否已产生接收中断,在主循环中处理UART3的中断事件任务,不堵塞其他中断
unsigned char uart4_txflag = 0; //定义1个位变量,UART4事件位变量标志,记录UART4已产生发送中断
// 供主循环查询UART4是否已产生发送中断,在主循环中处理UART1的中断事件任务,不堵塞其他中断
unsigned char uart4_rxflag = 0; //定义1个位变量,UART4事件位变量标志,记录UART4已产生接收中断
// 供主循环查询UART4是否已产生接收中断,在主循环中处理UART4的中断事件任务,不堵塞其他中断
void Timer0_Init(void) //定时器0初始化,2秒@40.000MHz
{
TM0PS = 0x65; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
AUXR &= 0x7F; //定时器时钟12T模式
TMOD &= 0xF0; //设置定时器模式
TL0 = 0xB1; //设置定时初始值
TH0 = 0x00; //设置定时初始值
TF0 = 0; //清除TF0标志
TR0 = 1; //定时器0开始计时
ET0 = 1; //使能定时器0中断
}
void Timer1_Init(void) //定时器1初始化,500毫秒@40.000MHz
{
TM1PS = 0x19; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
AUXR &= 0xBF; //定时器时钟12T模式
TMOD &= 0x0F; //设置定时器模式
TL1 = 0x99; //设置定时初始值
TH1 = 0x05; //设置定时初始值
TF1 = 0; //清除TF1标志
TR1 = 1; //定时器1开始计时
ET1 = 1; //使能定时器1中断
}
void Timer3_Init(void) //100毫秒@40.000MHz
{
TM3PS = 0x3D; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
T4T3M |= 0x02; //定时器时钟1T模式
T3L = 0xFC; //设置定时初始值
T3H = 0x03; //设置定时初始值
T4T3M |= 0x08; //定时器3开始计时
IE2 |= 0x20; //使能定时器3中断
}
void Timer4_Init(void) //200毫秒@40.000MHz
{
TM4PS = 0x7A; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
T4T3M |= 0x20; //定时器时钟1T模式
T4L = 0xEF; //设置定时初始值
T4H = 0x01; //设置定时初始值
T4T3M |= 0x80; //定时器4开始计时
IE2 |= 0x40; //使能定时器4中断
}
void Uart1_Init(void) //115200bps@40.000MHz
{
SCON = 0x50; //8位数据,可变波特率
AUXR |= 0x01; //串口1选择定时器2为波特率发生器
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xA9; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
ES = 1; //使能串口1中断
}
void Uart2_Init(void) //115200bps@40.000MHz
{
S2CON = 0x50; //8位数据,可变波特率
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xA9; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
IE2 |= 0x01; //使能串口2中断
}
void Uart3_Init(void) //115200bps@40.000MHz
{
S3CON = 0x10; //8位数据,可变波特率
S3CON &= 0xBF; //串口3选择定时器2为波特率发生器
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xA9; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
IE2 |= 0x08; //使能串口3中断
}
void Uart4_Init(void) //115200bps@40.000MHz
{
S4CON = 0x10; //8位数据,可变波特率
S4CON &= 0xBF; //串口4选择定时器2为波特率发生器
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xA9; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
IE2 |= 0x10; //使能串口4中断
}
void main (void)
{
EAXFR = 1; //允许访问扩展的特殊寄存器,XFR
WTST = 0; //设置取程序代码等待时间,赋值为0表示不等待,程序以最快速度运行
CKCON = 0; //设置访问片内的xdata速度,赋值为0表示用最快速度访问,不增加额外的等待时间
P0M0 = 0x00; P0M1 = 0x00; //设置 P0 口为准双向口模式
P1M0 = 0x00; P1M1 = 0x00; //设置 P1 口为准双向口模式
P2M0 = 0x00; P2M1 = 0x00; //设置 P2 口为准双向口模式
P3M0 = 0x00; P3M1 = 0x00; //设置 P3 口为准双向口模式
P3M0 = 0x00; P3M1 = 0x0c; //P32、P33设置为高阻输入(需要同步开启上拉电阻)
P4M0 = 0x00; P4M1 = 0x00; //设置 P4 口为准双向口模式
P5M0 = 0x00; P5M1 = 0x00; //设置 P5 口为准双向口模式
P6M0 = 0x00; P6M1 = 0x00; //设置 P6 口为准双向口模式
P7M0 = 0x00; P7M1 = 0x00; //设置 P7 口为准双向口模式
P3PU = 0x0c; //P32、P33打开上拉电阻
int0_flag = 0; //初始化用户标志位
int1_flag = 0; //初始化用户标志位
int2_flag = 0; //初始化用户标志位
int3_flag = 0; //初始化用户标志位
t0_flag = 0; //初始化用户标志位
t1_flag = 0; //初始化用户标志位
t3_flag = 0; //初始化用户标志位
t4_flag = 0; //初始化用户标志位
uart1_txflag = 0; //初始化用户标志位
uart1_rxflag = 0; //初始化用户标志位
uart2_txflag = 0; //初始化用户标志位
uart2_rxflag = 0; //初始化用户标志位
uart3_txflag = 0; //初始化用户标志位
uart3_rxflag = 0; //初始化用户标志位
uart4_txflag = 0; //初始化用户标志位
uart4_rxflag = 0; //初始化用户标志位
IT0 = 0; //使能 INT0 上升沿和下降沿中断
// IT0 = 1; //使能 INT0 下降沿中断
EX0 = 1; //使能 INT0 中断
IE0 = 0; //清INT0中断标志
// IT1 = 0; //使能 INT1 上升沿和下降沿中断
IT1 = 1; //使能 INT1 下降沿中断
EX1 = 1; //使能 INT1 中断
IE1 = 0; //清INT1中断标志
INTCLKO |= 0x10; //使能INT2中断
INTCLKO |= 0x20; //使能INT3中断
Timer0_Init(); //调用定时器0初始化函数
Timer1_Init(); //调用定时器1初始化函数
Timer3_Init(); //调用定时器0初始化函数
Timer4_Init(); //调用定时器1初始化函数
Uart1_Init(); //调用UART1初始化函数
Uart2_Init(); //调用UART2初始化函数
Uart3_Init(); //调用UART3初始化函数
Uart4_Init(); //调用UART4初始化函数
EA = 1; //总中断允许位打开
P40 = 0; //打开LED灯供电
while(1) //主循环中查询需要处理的各种事件
{
/*本演示程序中,主循环查询各中断有无需要继续处理的事件的次序,
依次是 INTx/TIMERx/UARTx, 用户可以自己根据实际情况,
调整查询各中断有无需要继续处理的事件的优先次序*/
//查询外部中断0事件
if(int0_flag) //主循环中查询,INT0是否已产生中断,是否有需要处理的INT 0事件
{
int0_flag = 0; //清0,INT0事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询外部中断1事件
if(int1_flag) //主循环中查询,INT1是否已产生中断,是否有需要处理的INT1事件
{
int1_flag = 0; //清0,INT1事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询外部中断2事件
if(int2_flag) //主循环中查询,INT2是否已产生中断,是否有需要处理的INT2事件
{
int2_flag = 0; //清0,INT2事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询外部中断3事件
if(int3_flag) //主循环中查询,INT3是否已产生中断,是否有需要处理的INT3事件
{
int3_flag = 0; //清0,INT3事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器0中断事件
if(t0_flag) //主循环中查询,定时器0是否已产生中断,是否有需要处理的定时器0事件
{
t0_flag = 0; //清0,T0事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器1中断事件
if(t1_flag) //主循环中查询,定时器1是否已产生中断,是否有需要处理的定时器1事件
{
t1_flag = 0; //清0,T1事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器3中断事件
if(t3_flag) //主循环中查询,定时器3是否已产生中断,是否有需要处理的定时器3事件
{
t3_flag = 0; //清0,T3事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器4中断事件
if(t4_flag) //主循环中查询,定时器4是否已产生中断,是否有需要处理的定时器4事件
{
t4_flag = 0; //清0,T4事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口1中断事件
if(uart1_txflag) //主循环中查询,UART1是否已产生发送中断,是否有需要处理的UART1发送事件
{
uart1_txflag = 0; //清0,UART1发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart1_rxflag) //主循环中查询,UART1是否已产生接收中断,是否有需要处理的UART1接收事件
{
uart1_rxflag = 0; //清0,UART1接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口2中断事件
if(uart2_txflag) //主循环中查询,UART2是否已产生发送中断,是否有需要处理的UART2发送事件
{
uart2_txflag = 0; //清0,UART2发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart2_rxflag) //主循环中查询,UART2是否已产生接收中断,是否有需要处理的UART2接收事件
{
uart2_rxflag = 0; //清0,UART2接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口3中断事件
if(uart3_txflag) //主循环中查询,UART3是否已产生发送中断,是否有需要处理的UART3发送事件
{
uart3_txflag = 0; //清0,UART3发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart3_rxflag) //主循环中查询,UART3是否已产生接收中断,是否有需要处理的UART3接收事件
{
uart3_rxflag = 0; //清0,UART3接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口4中断事件
if(uart4_txflag) //主循环中查询,UART4是否已产生发送中断,是否有需要处理的UART4发送事件
{
uart4_txflag = 0; //清0,UART4发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart4_rxflag) //主循环中查询,UART4是否已产生接收中断,是否有需要处理的UART4接收事件
{
uart4_rxflag = 0; //清0,UART4接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
}
}
void int0_isr(void) interrupt INT0_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int0_flag = 1; // int0_flag置1是通知主循环处理部分INT0中断事件不需要特急处理的任务
//置1,记录INT0已产生中断,供主循环查询判断有无需处理的INT0任务
if(INT0) //边沿中断,进入后再次判断电平从而判断是什么样的电平
{
_nop_(); //判断为高电平,则当前为上升沿
_nop_(); //可以在这里插入断点进行观察现象
}
else
{
_nop_(); //判断为低电平,则当前为下降沿
_nop_(); //可以在这里插入断点进行观察现象
}
}
//INT0中断服务程序,INT0_VECTOR在AI8051U.H头文件中已宏定义为0
void int1_isr(void) interrupt INT1_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int1_flag = 1; // int1_flag置1是通知主循环处理部分INT1中断事件不需要特急处理的任务
}
//INT1中断服务程序,INT1_VECTOR在AI8051U.H头文件中已宏定义为2
void int2_isr(void) interrupt INT2_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int2_flag = 1; // int2_flag置1是通知主循环处理部分INT2中断事件不需要特急处理的任务
}
//INT2中断服务程序,INT2_VECTOR在AI8051U.H头文件中已宏定义为10
void int3_isr(void) interrupt INT3_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int3_flag = 1; // int3_flag置1是通知主循环处理部分INT3中断事件不需要特急处理的任务
}
//INT3中断服务程序,INT3_VECTOR在AI8051U.H头文件中已宏定义为11
void Timer0_Isr(void) interrupt TMR0_VECTOR //定时器0中断服务程序
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t0_flag = 1; // t0_flag置1是通知主循环处理部分T0中断事件不需要特急处理的任务
//置1,记录定时器0已产生中断,供主循环查询判断有无需处理的定时器0任务
}
//定时器0中断服务程序,TMR0_VECTOR在AI8051U.H头文件中已宏定义为1
void Timer1_Isr(void) interrupt TMR1_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t1_flag = 1; // t1_flag置1是通知主循环处理部分T1中断事件不需要特急处理的任务
//置1,记录定时器1已产生中断,供主循环查询判断有无需处理的定时器1任务
}
//定时器1中断服务程序,TMR1_VECTOR在AI8051U.H头文件中已宏定义为3
void Timer3_Isr(void) interrupt TMR3_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t3_flag = 1; // t3_flag置1是通知主循环处理部分T3中断事件不需要特急处理的任务
//置1,记录定时器3已产生中断,供主循环查询判断有无需处理的定时器1任务
}
//定时器3中断服务程序,TMR3_VECTOR在AI8051U.H头文件中已宏定义为19
void Timer4_Isr(void) interrupt TMR4_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t4_flag = 1; // t1_flag置4是通知主循环处理部分T4中断事件不需要特急处理的任务
//置1,记录定时器4已产生中断,供主循环查询判断有无需处理的定时器1任务
}
//定时器4中断服务程序,TMR4_VECTOR在AI8051U.H头文件中已宏定义为20
void Uart1_Isr(void) interrupt UART1_VECTOR
{
if (TI) //检测串口1发送中断
{
TI = 0; //清除串口1发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart1_txflag = 1; // uart1_txflag置1是通知主循环处理部分串口1发送中断事件不需要特急处理的任务
//置1,记录UART1已产生发送中断,供主循环查询判断有无需处理的UART1发送任务
}
if (RI) //检测串口1接收中断
{
RI = 0; //清除串口1接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart1_rxflag = 1; // uart1_rxflag置1是通知主循环处理部分串口1接收中断事件不需要特急处理的任务
//置1,记录UART1已产生接收中断,供主循环查询判断有无需处理的UART1接收任务
}
}
//UART1中断服务程序,UART1_VECTOR在AI8051U.H头文件中已宏定义为4
void Uart2_Isr(void) interrupt UART2_VECTOR
{
if (S2CON & 0x02) //检测串口2发送中断
{
S2CON &= ~0x02; //清除串口2发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart2_txflag = 1; // uart2_txflag置1是通知主循环处理部分串口2发送中断事件不需要特急处理的任务
//置1,记录UART2已产生发送中断,供主循环查询判断有无需处理的UART2发送任务
}
if (S2CON & 0x01) //检测串口2接收中断
{
S2CON &= ~0x01; //清除串口2接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart2_rxflag = 1; // uart2_rxflag置1是通知主循环处理部分串口2接收中断事件不需要特急处理的任务
//置1,记录UART2已产生接收中断,供主循环查询判断有无需处理的UART2接收任务
}
}
//UART2中断服务程序,UART2_VECTOR在AI8051U.H头文件中已宏定义为8
void Uart3_Isr(void) interrupt UART3_VECTOR
{
if (S3CON & 0x02) //检测串口3发送中断
{
S3CON &= ~0x02; //清除串口3发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart3_txflag = 1; // uart3_txflag置1是通知主循环处理部分串口3发送中断事件不需要特急处理的任务
//置1,记录UART3已产生发送中断,供主循环查询判断有无需处理的UART3发送任务
}
if (S3CON & 0x01) //检测串口3接收中断
{
S3CON &= ~0x01; //清除串口3接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart3_rxflag = 1; // uart3_rxflag置1是通知主循环处理部分串口3接收中断事件不需要特急处理的任务
//置1,记录UART3已产生接收中断,供主循环查询判断有无需处理的UART3接收任务
}
}
//UART3中断服务程序,UART3_VECTOR在AI8051U.H头文件中已宏定义为17
void Uart4_Isr(void) interrupt UART4_VECTOR
{
if (S4CON & 0x02) //检测串口4发送中断
{
S4CON &= ~0x02; //清除串口4发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart4_txflag = 1; // uart4_txflag置1是通知主循环处理部分串口4发送中断事件不需要特急处理的任务
//置1,记录UART4已产生发送中断,供主循环查询判断有无需处理的UART4发送任务
}
if (S4CON & 0x01) //检测串口4接收中断
{
S4CON &= ~0x01; //清除串口4接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart4_rxflag = 1; // uart4_rxflag置1是通知主循环处理部分串口4接收中断事件不需要特急处理的任务
//置1,记录UART4已产生接收中断,供主循环查询判断有无需处理的UART4接收任务
}
}
//UART4中断服务程序,UART4_VECTOR在AI8051U.H头文件中已宏定义为18
神农鼎 发表于 2025-8-7 08:53
用这个程序架构
好的,谢谢
页:
[1]