利用硬件I2C实现高效率无阻塞读写方法 | 还可以 DMA-I2C
I2C读写巨慢, 即使在400kbit/s下, 读写一个字节数据也要花费20多us, 这太慢了, 每读写一次设备的寄存器数据, 还要设备地址和寄存器地址, 又加了两个字节数据, 我就读了个传感器的两个字节数据而已, 动辄还要花费100us的阻塞时间, 这太浪费资源了针对这个问题, 我利用硬件I2C及中断配合, 实现了这个没有任何阻塞MCU来读写I2C设备的方法, 效率大大提升
单片机采用stc32g8k64, 主频为40Mhz, 读写LDC1612电感涡流传感器为例来测试异步读写I2C数据
/**
* stc32g8k64 硬件i2c 实现 无阻塞异步执行
* ldc1612 i2c异步读写测试
*/
#include <STC32G.h>
#include <stdio.h>
#define FOSC 40000000UL // 主频40M
void Delay1ms(void) //@40.000MHz
{
unsigned char data i, j;
i = 39;
j = 230;
do
{
while (--j)
;
} while (--i);
}
void delay(uint16 ms)
{
while (ms--)
{
Delay1ms();
}
}
// ---------------------- uart1打印测试用 开始----------------------------
bit busy;
char wptr;
char rptr;
char buffer;
void Uart1_Isr(void) interrupt 4
{
if (TI)
{
TI = 0;
busy = 0;
}
if (RI)
{
RI = 0;
buffer = SBUF;
wptr &= 0x0f;
}
}
void Uart1_Init(void) // 1000000bps@40.000MHz
{
SCON = 0x50;// 8位数据,可变波特率
AUXR |= 0x40; // 定时器时钟1T模式
AUXR &= 0xFE; // 串口1选择定时器1为波特率发生器
TMOD &= 0x0F; // 设置定时器模式
TL1 = 0xF6; // 设置定时初始值
TH1 = 0xFF; // 设置定时初始值
ET1 = 0; // 禁止定时器中断
TR1 = 1; // 定时器1开始计时
ES = 1; // 使能串口1中断
}
void UartSend(char dat)
{
while (busy)
;
busy = 1;
SBUF = dat;
}
void UartSendStr(char *p)
{
while (*p)
{
UartSend(*p++);
}
}
char sendNumberCharArr;
// 实现一个uint32转char的方法
void numberToChar(uint32 number, char *buffer)
{
char temp; // Maximum digits for uint32 + null terminator
int i = 0;
int j = 0;
// Handle zero case
if (number == 0)
{
buffer = '0';
buffer = '\0';
return;
}
// Extract digits in reverse order
while (number > 0)
{
temp = (number % 10) + '0';
number /= 10;
}
// Reverse the string to correct order
while (i > 0)
{
buffer = temp[--i];
}
buffer = '\0'; // Null terminate
}
// ---------------------- uart1打印测试用 结束----------------------------
//------------------------------- I2C异步执行栈 开始 -----------------------------
sbit ET4 = IE2 ^ 6;
typedef void (*AsyncFunc)(void);
AsyncFunc AsyncFuncNext_callback = NULL;
// 延时执行下一个任务
void AsyncFuncNext(AsyncFunc callback, uint16 usDelay)
{
uint16 totalTime = 0xffff - usDelay;
T4T3M &= ~0x80;
ET4 = 0;
T4L = totalTime & 0xff; // 设置定时初始值
T4H = totalTime >> 8; // 设置定时初始值
AsyncFuncNext_callback = callback;
T4T3M |= 0x80; // 定时器4开始计时
ET4 = 1; // 使能中断
}
// 定时器用于异步执行
void Timer4_Init(void) //@40.000MHz
{
// 1us计时一个数字
TM4PS = 0x27; // 设置定时器时钟预分频
T4T3M |= 0x20;// 定时器时钟1T模式
T4L = 0x00; // 设置定时初始值
T4H = 0x00; // 设置定时初始值
T4T3M &= ~0x80; // 定时器4停止计时
ET4 = 0;
}
// 定时器4用作异步执行定时器, 延时触发下一步的执行函数
void Timer4_async_next_isr() interrupt 20
{
T4T3M &= ~0x80;
ET4 = 0;
if (AsyncFuncNext_callback != NULL)
{
AsyncFuncNext_callback();
}
}
AsyncFunc I2C_Isr_callback = NULL; // I2C中断回调函数
void I2C_Isr() interrupt 24 // I2C中断
{
if (I2CMSST & 0x40)
{
I2CMSST &= ~0x40; // 清中断标志
if (I2C_Isr_callback != NULL)
{
I2C_Isr_callback();
}
}
}
//------------------------------- 异步执行栈 结束 -----------------------------
//------------------------------- I2C寄存器操作 开始 --------------------------
void Wait_I2C()
{
while (!(I2CMSST & 0x40))
;
I2CMSST &= ~0x40;
}
uint8 i2c_readRegister16Async_addr = 0; // readRegister16Async 地址参数
uint8 i2c_readRegister16Async_reg = 0; // readRegister16Async 寄存器参数
uint8 i2c_readRegister16Async_step = 0; // readRegister16Async 异步执行步骤
uint16 i2c_readRegister16Async_value = 0; // readRegister16Async 读取数据返回值
AsyncFunc i2c_readRegister16Async_endCallback = NULL; // readRegister16Async 读取数据完成回调
void i2c_readRegister16Async_timeout()
{
i2c_readRegister16Async_value = 0;
i2c_readRegister16Async_step = 0;
I2C_Isr_callback = NULL;
I2CMSST = 0x00;
if (i2c_readRegister16Async_endCallback != NULL)
{
i2c_readRegister16Async_endCallback();
}
}
// I2C异步读取, 16位寄存器
void i2c_readRegister16Async()
{
if (i2c_readRegister16Async_step == 1)
{
I2CTXD = i2c_readRegister16Async_addr << 1; // 发送i2c地址
I2CMSCR = 0x89; // 中断使能, 发送起始信号+设备地址+写信号
i2c_readRegister16Async_step++;
AsyncFuncNext(i2c_readRegister16Async_timeout, 200);
return;
}
if (i2c_readRegister16Async_step == 2)
{
I2CTXD = i2c_readRegister16Async_reg; // 发送读取寄存器地址
I2CMSCR = 0x8A; // 中断使能,发送数据命令+接收ACK命令
i2c_readRegister16Async_step++;
AsyncFuncNext(i2c_readRegister16Async_timeout, 200);
return;
}
if (i2c_readRegister16Async_step == 3)
{
I2CTXD = i2c_readRegister16Async_addr << 1 | 0x01; // 发送i2c地址+读取数据
I2CMSCR = 0x89; // 中断使能,发送起始信号+设备地址+写信号
i2c_readRegister16Async_step++;
AsyncFuncNext(i2c_readRegister16Async_timeout, 200);
return;
}
if (i2c_readRegister16Async_step == 4)
{
I2CMSST = 0x00; // 设置 ACK 信号
I2CMSCR = 0x8B; // 中断使能, 接收数据命令+发送ACK(0)命令
i2c_readRegister16Async_step++;
AsyncFuncNext(i2c_readRegister16Async_timeout, 200);
return;
}
if (i2c_readRegister16Async_step == 5)
{
i2c_readRegister16Async_value = I2CRXD;
i2c_readRegister16Async_value <<= 8;
I2CMSST = 0x01; // 设置 NAK 信号
I2CMSCR = 0x8C; // 中断使能, 接收数据命令+发送NAK(1)命令
i2c_readRegister16Async_step++;
AsyncFuncNext(i2c_readRegister16Async_timeout, 200);
return;
}
if (i2c_readRegister16Async_step == 6)
{
i2c_readRegister16Async_value |= I2CRXD;
i2c_readRegister16Async_step++;
I2CMSCR = 0x86; // 中断使能, 发送 STOP 命令
AsyncFuncNext(i2c_readRegister16Async_timeout, 200);
return;
}
if (i2c_readRegister16Async_step == 7)
{
I2C_Isr_callback = NULL;
i2c_readRegister16Async_step = 0;
AsyncFuncNext(i2c_readRegister16Async_endCallback, 20);
return;
}
}
// 使用异步来读取i2c数据
void i2c_readRegister16Async_start(uint8 addr, uint8 reg, AsyncFunc readEndCallback)
{
i2c_readRegister16Async_addr = addr;
i2c_readRegister16Async_reg = reg;
i2c_readRegister16Async_value = 0;
i2c_readRegister16Async_step = 1;
I2C_Isr_callback = i2c_readRegister16Async;
i2c_readRegister16Async_endCallback = readEndCallback;
i2c_readRegister16Async();
}
// I2C同步读取, 16位寄存器
uint16 i2c_readRegister16(uint8 addr, uint8 reg)
{
uint16 readDataValue = 0;
I2CTXD = addr << 1; // 写数据到数据缓冲区
I2CMSCR = 0x09; // 发送起始信号+设备地址+写信号
Wait_I2C();
I2CTXD = reg; // 写数据到数据缓冲区
I2CMSCR = 0x0A; // 发送数据命令+接收ACK命令
Wait_I2C();
I2CTXD = addr << 1 | 0x01; // 发送i2c地址+读取数据
I2CMSCR = 0x09; // 发送起始信号+设备地址+写信号
Wait_I2C();
I2CMSST = 0x00; // 设置 ACK 信号
I2CMSCR = 0x0B; // 接收数据命令+发送ACK(0)命令
Wait_I2C();
readDataValue = I2CRXD;
readDataValue <<= 8;
I2CMSST = 0x01; // 设置 NAK 信号
I2CMSCR = 0x0C; // 接收数据命令+发送NAK(1)命令
Wait_I2C();
readDataValue |= I2CRXD;
I2CMSCR = 0x06; // 发送 STOP 命令
Wait_I2C();
return readDataValue;
}
uint8 i2c_writeRegister16Async_addr = 0; // writeRegister16Async 地址参数
uint8 i2c_writeRegister16Async_reg = 0; // writeRegister16Async 寄存器参数
uint8 i2c_writeRegister16Async_step = 0; // writeRegister16Async 异步执行步骤
uint16 i2c_writeRegister16Async_value = 0; // writeRegister16Async 写入数据
AsyncFunc i2c_writeRegister16Async_endCallback = NULL; // writeRegister16Async 读取数据完成回调
// 异步写16位寄存器超时
void i2c_writeRegister16Async_timeout()
{
i2c_writeRegister16Async_value = 0;
i2c_writeRegister16Async_step = 0;
I2C_Isr_callback = NULL;
I2CMSST = 0x00;
if (i2c_writeRegister16Async_endCallback != NULL)
{
i2c_writeRegister16Async_endCallback();
}
}
// 异步写16位寄存器
void i2c_writeRegister16Async()
{
if (i2c_writeRegister16Async_step == 1)
{
I2CTXD = i2c_writeRegister16Async_addr << 1; // 写数据到数据缓冲区
I2CMSCR = 0x89; // 发送起始信号+设备地址+写信号
i2c_writeRegister16Async_step++;
AsyncFuncNext(i2c_writeRegister16Async_timeout, 200);
return;
}
if (i2c_writeRegister16Async_step == 2)
{
I2CTXD = i2c_writeRegister16Async_reg; // 写数据到数据缓冲区
I2CMSCR = 0x8A; // 发送数据命令+接收ACK命令
i2c_writeRegister16Async_step++;
AsyncFuncNext(i2c_writeRegister16Async_timeout, 200);
return;
}
if (i2c_writeRegister16Async_step == 3)
{
I2CTXD = (i2c_writeRegister16Async_value >> 8) & 0xFF; // 写数据到数据缓冲区
I2CMSCR = 0x8A; // 发送数据命令+接收ACK命令
i2c_writeRegister16Async_step++;
AsyncFuncNext(i2c_writeRegister16Async_timeout, 200);
return;
}
if (i2c_writeRegister16Async_step == 4)
{
I2CTXD = i2c_writeRegister16Async_value & 0xFF; // 写数据到数据缓冲区
I2CMSCR = 0x8A; // 发送数据命令+接收ACK命令
i2c_writeRegister16Async_step++;
AsyncFuncNext(i2c_writeRegister16Async_timeout, 200);
return;
}
if (i2c_writeRegister16Async_step == 5)
{
I2CMSCR = 0x86; // 发送 STOP 命令
i2c_writeRegister16Async_step++;
AsyncFuncNext(i2c_writeRegister16Async_timeout, 200);
return;
}
if (i2c_writeRegister16Async_step == 6)
{
I2C_Isr_callback = NULL;
i2c_writeRegister16Async_step = 0;
AsyncFuncNext(i2c_writeRegister16Async_endCallback, 20);
return;
}
}
// 使用异步来写入i2c数据
void i2c_writeRegister16Async_start(uint8 addr, uint8 reg, uint16 value, AsyncFunc writeEndCallback)
{
i2c_writeRegister16Async_addr = addr;
i2c_writeRegister16Async_reg = reg;
i2c_writeRegister16Async_value = value;
I2C_Isr_callback = i2c_writeRegister16Async;
i2c_writeRegister16Async_endCallback = writeEndCallback;
i2c_writeRegister16Async_step = 1;
i2c_writeRegister16Async();
}
// 同步写16位寄存器
void i2c_writeRegister16(uint8 addr, uint8 reg, uint16 value)
{
I2CTXD = addr << 1; // 写数据到数据缓冲区
I2CMSCR = 0x09; // 发送起始信号+设备地址+写信号
Wait_I2C();
I2CTXD = reg; // 写数据到数据缓冲区
I2CMSCR = 0x0A; // 发送数据命令+接收ACK命令
Wait_I2C();
I2CTXD = (value >> 8) & 0xFF; // 写数据到数据缓冲区
I2CMSCR = 0x0A; // 发送数据命令+接收ACK命令
Wait_I2C();
I2CTXD = value & 0xFF; // 写数据到数据缓冲区
I2CMSCR = 0x0A; // 发送数据命令+接收ACK命令
Wait_I2C();
I2CMSCR = 0x06; // 发送 STOP 命令
Wait_I2C();
}
//------------------------------- I2C寄存器操作 结束 --------------------------
//------------------------------- LDC1612操作 开始 ----------------------------
#define SD_PIN P1_6 // SD引脚
#define INTB_PIN P1_7// 数据就绪中断
#define CLKIN_PIN P1_3 // 外部时钟引脚
// LDC1612 寄存器地址
#define LDC1612_ADDR 0x2A // I2C地址 (ADDR接地时)
#define REG_DATA_MSB_CH0 0x00 // 通道0数据高16位
#define REG_DATA_LSB_CH0 0x01 // 通道0数据低16位
#define REG_DATA_MSB_CH1 0x02 // 通道1数据高16位
#define REG_DATA_LSB_CH1 0x03 // 通道1数据低16位
#define REG_RCOUNT_CH0 0x08 // 通道0转换计数
#define REG_RCOUNT_CH1 0x09 // 通道1转换计数
#define REG_SETTLE_CNT_CH0 0x10 // 通道0稳定计数
#define REG_SETTLE_CNT_CH1 0x11 // 通道1稳定计数
#define REG_CLOCK_DIVIDERS_CH0 0x14 // 通道0时钟分频
#define REG_CLOCK_DIVIDERS_CH1 0x15 // 通道1时钟分频
#define REG_STATUS 0x18 // 状态寄存器
#define REG_ERROR_CONFIG 0x19 // 错误配置
#define REG_CONFIG 0x1A // 配置寄存器
#define REG_MUX_CONFIG 0x1B // 多路复用配置
#define REG_RESET_DEV 0x1C // 设备复位
#define REG_DRIVE_CURRENT_CH0 0x1E// 通道0驱动电流
#define REG_DRIVE_CURRENT_CH1 0x1F// 通道1驱动电流
// 配置常量
#define CONVERSION_TIME 0x0850 // 转换时间设置
#define SETTLE_TIME 0x0400 // 稳定时间设置
#define CLOCK_DIVIDER 0x1001 // 时钟分频设置
#define DRIVE_CURRENT 0x1C00 // 驱动电流设置 (最大电流)
// 全局变量
uint32 ch0_value = 0;
uint32 ch1_value = 0;
uint8 LDC1612_read_ready = 0;
uint8 LDC1612_data_ready = 0;
uint16 LDC1612_readDataAsync_msb = 0;
uint16 LDC1612_readDataAsync_lsb = 0;
uint16 LDC1612_readDataAsync_step = 0;
uint8 LDC1612_readDataAsync_isStart = 0;
// 异步读取传感器数据
void LDC1612_readDataAsync()
{
if (LDC1612_readDataAsync_step == 1)
{
LDC1612_readDataAsync_step++;
AsyncFuncNext(LDC1612_readDataAsync, 100);
i2c_readRegister16Async_start(LDC1612_ADDR, REG_STATUS, LDC1612_readDataAsync);
return;
}
if (LDC1612_readDataAsync_step == 2)
{
LDC1612_readDataAsync_step++;
i2c_readRegister16Async_start(LDC1612_ADDR, REG_DATA_MSB_CH0, LDC1612_readDataAsync);
return;
}
if (LDC1612_readDataAsync_step == 3)
{
LDC1612_readDataAsync_step++;
LDC1612_readDataAsync_msb = i2c_readRegister16Async_value;
i2c_readRegister16Async_start(LDC1612_ADDR, REG_DATA_LSB_CH0, LDC1612_readDataAsync);
return;
}
if (LDC1612_readDataAsync_step == 4)
{
LDC1612_readDataAsync_step = 0;
LDC1612_readDataAsync_lsb = i2c_readRegister16Async_value;
ch0_value = ((uint32)LDC1612_readDataAsync_msb << 16) | LDC1612_readDataAsync_lsb;
ch0_value &= 0x0FFFFFFF; // 保留28位有效数据
ch0_value >>= 12; // 转为16位数据
LDC1612_data_ready = 1;// 读取数据完成
return;
}
}
// 同步读取传感器数据
void LDC1612_readData()
{
uint16 msb = 0;
uint16 lsb = 0;
// 读取状态寄存器
uint16 status = i2c_readRegister16(LDC1612_ADDR, REG_STATUS);
// 检查错误标志
if (status & 0x0008)
{
// Serial.println("Error: Amplitude too low!");
}
if (status & 0x0010)
{
// Serial.println("Error: Timeout occurred!");
}
// 读取通道0数据
msb = i2c_readRegister16(LDC1612_ADDR, REG_DATA_MSB_CH0);
lsb = i2c_readRegister16(LDC1612_ADDR, REG_DATA_LSB_CH0);
ch0_value = ((uint32)msb << 16) | lsb;
ch0_value &= 0x0FFFFFFF; // 保留28位有效数据
ch0_value >>= 12;
LDC1612_data_ready = 1; // 读取数据完成
}
uint8 LDC1612_writeInitReg_step = 0;
// 异步方法写入寄存器值
void LDC1612_writeInitRegAsync()
{
// 配置通道0
if (LDC1612_writeInitReg_step == 1)
{
LDC1612_writeInitReg_step++;
i2c_writeRegister16Async_start(LDC1612_ADDR, REG_RCOUNT_CH0, CONVERSION_TIME, LDC1612_writeInitRegAsync);
return;
}
if (LDC1612_writeInitReg_step == 2)
{
LDC1612_writeInitReg_step++;
i2c_writeRegister16Async_start(LDC1612_ADDR, REG_SETTLE_CNT_CH0, SETTLE_TIME, LDC1612_writeInitRegAsync);
return;
}
if (LDC1612_writeInitReg_step == 3)
{
LDC1612_writeInitReg_step++;
i2c_writeRegister16Async_start(LDC1612_ADDR, REG_CLOCK_DIVIDERS_CH0, CLOCK_DIVIDER, LDC1612_writeInitRegAsync);
return;
}
if (LDC1612_writeInitReg_step == 4)
{
LDC1612_writeInitReg_step++;
i2c_writeRegister16Async_start(LDC1612_ADDR, REG_DRIVE_CURRENT_CH0, DRIVE_CURRENT, LDC1612_writeInitRegAsync);
return;
}
// 配置错误检测
if (LDC1612_writeInitReg_step == 5)
{
LDC1612_writeInitReg_step++;
// 启用数据输出错误检测
i2c_writeRegister16Async_start(LDC1612_ADDR, REG_ERROR_CONFIG, 0x0001, LDC1612_writeInitRegAsync);
return;
}
// 配置多路复用器 - 只启用通道0
if (LDC1612_writeInitReg_step == 6)
{
LDC1612_writeInitReg_step++;
// 只扫描通道0,去抖动计数=1
i2c_writeRegister16Async_start(LDC1612_ADDR, REG_MUX_CONFIG, 0x0208, LDC1612_writeInitRegAsync);
return;
}
// 配置主配置寄存器
if (LDC1612_writeInitReg_step == 7)
{
LDC1612_writeInitReg_step++;
// 启用传感器,单通道模式
i2c_writeRegister16Async_start(LDC1612_ADDR, REG_CONFIG, 0x1401, LDC1612_writeInitRegAsync);
return;
}
// 初始化完成
if (LDC1612_writeInitReg_step == 8)
{
LDC1612_writeInitReg_step = 0;
return;
}
}
// 同步方法写入寄存器值
void LDC1612_writeInitReg()
{
// 配置通道0
i2c_writeRegister16(LDC1612_ADDR, REG_RCOUNT_CH0, CONVERSION_TIME);
i2c_writeRegister16(LDC1612_ADDR, REG_SETTLE_CNT_CH0, SETTLE_TIME);
i2c_writeRegister16(LDC1612_ADDR, REG_CLOCK_DIVIDERS_CH0, CLOCK_DIVIDER);
i2c_writeRegister16(LDC1612_ADDR, REG_DRIVE_CURRENT_CH0, DRIVE_CURRENT);
// 配置错误检测
i2c_writeRegister16(LDC1612_ADDR, REG_ERROR_CONFIG, 0x0001); // 启用数据输出错误检测
// 配置多路复用器 - 只启用通道0
i2c_writeRegister16(LDC1612_ADDR, REG_MUX_CONFIG, 0x0208); // 只扫描通道0,去抖动计数=1
// 配置主配置寄存器
i2c_writeRegister16(LDC1612_ADDR, REG_CONFIG, 0x1401); // 启用传感器,单通道模式
}
// LDC1612 中断服务程序 (数据就绪)
void LDC1612_ready_isr() interrupt 38
{
unsigned char intf;
intf = P1INTF;
if (intf)
{
P1INTF = 0x00;
// P1.7 口中断
if (intf & 0x80)
{
LDC1612_read_ready = 1;
}
}
}
void initI2C()
{
P_SW2 = 0x80; // 使能访问XFR
P1PU |= 0x30; // P1.4和P1.5使能4K上拉电阻
P1M1 |= 0x10;
P1M0 |= 0x10; // P1.4(SDA)开漏输出
P1M1 |= 0x20;
P1M0 |= 0x20; // P1.5(SCL)开漏输出
// I2C总线速度计算: SYSCLK / 2 / (MSSPEED * 2 + 4)
// 对于400KHz: MSSPEED = (40M / 400K / 2 - 4) / 2 = 23 (0x17)
I2CCFG = 0x80 | 0x40 | 0x17; // 使能I2C + 主机模式 + 400KHz速度
I2CMSST = 0x00; // 清除状态寄存器
IP2H |= 0x40; // 设置I2c中断的优先级为高
IP2 |= 0x40; // 设置I2c中断的优先级为高
}
// LDC1612初始化
void initLDC1612()
{
// p1.6 SD
P1M1 &= ~0x40;
P1M0 |= 0x40; // 推挽输出
// p1.3 CLKIN_PIN
P1M1 &= ~0x08;
P1M0 |= 0x08; // 推挽输出
// p1.7 INTB 数据准备好中断
P1M1 |= 0x80;
P1M0 &= ~0x80; // 高阻输入
SD_PIN = 0; // 低电平使能ldc1612
CLKIN_PIN = 0; // 禁用外部时钟引脚
P1IM0 = 0x00;// 下降沿中断
P1IM1 = 0x00;
P1INTE = 0x80; // 使能 p1.7 口中断
Timer4_Init();
initI2C();
delay(50);
// 同步方法写入寄存器
// LDC1612_writeInitReg();
// 异步方式写入寄存器
LDC1612_writeInitReg_step = 1;
LDC1612_writeInitRegAsync();
}
//------------------------------- LDC1612操作 结束 ----------------------------
void main(void)
{
P_SW2 = 0x80; // 使能访问XFR
WTST = 0; // 设置程序指令延时参数,赋值为0可将CPU执行指令的速度设置为最快
CKCON = 0; // 提高访问XRAM速度
Uart1_Init(); // 初始化串口 1M波特率
EA = 1; // 允许总中断
initLDC1612();
UartSendStr("setup\n");
while (1)
{
if (LDC1612_read_ready == 1)
{
LDC1612_read_ready = 0;
// 同步读取传感器数据
// LDC1612_readData();
// i2c无阻塞异步读取传感器数据
LDC1612_readDataAsync_step = 1;
LDC1612_readDataAsync();
}
if (LDC1612_data_ready == 1)
{
LDC1612_data_ready = 0;
UartSendStr("LDC1612 data:");
numberToChar(ch0_value, sendNumberCharArr);
UartSendStr(sendNumberCharArr);
UartSendStr("\n");
}
}
}
还可以 DMA-I2C 神农鼎 发表于 2025-8-6 08:21
还可以 DMA-I2C我看官方的demo读取数据时,
DMA-I2C在发送设备地址和寄存器地址时还是是阻塞的,
后边的数据传输是启动的DMA,
写入时可以全部使用DMA来操作, 我试试
chengxg 发表于 2025-8-6 09:31
我看官方的demo读取数据时,
DMA-I2C在发送设备地址和寄存器地址时还是是阻塞的,
后边的数据传输是启动的D ...
这个是硬件外设的查询模式,不是DMA阻塞
ercircle 发表于 2025-8-6 23:37
这个是硬件外设的查询模式,不是DMA阻塞
我知道这是查询模式清零的, I2C读取数据之前得需要先写入设备地址和寄存器地址, 后面的读取数据是走dma,没有阻塞, 但是开头需要先发送设备地址和寄存器地址, 按照这样写的话, 就又成为阻塞形式了, 期间cpu啥也干不了, 我想要的是没有任何while死循环的零阻塞I2C数据读写
页:
[1]