编译BUG|主循环代码中设置初始值,中断函数中进行修改,主函数中判断,要增加volatile属
图1所示为串口3发送数据的正常情况代码,图2为图1其对应的汇编代码;图3为调换while(uart3_busy==1)之后的代码,图4为图3其对应的汇编代码;
仔细观察两个代码之间while(uart3_busy==1)这条语句对应的汇编指令,图2中,会不断判断uart3_busy是否等于1,然后根据条件进行跳转;
然而,在图4中while(uart3_busy==1)代码直接变成了永远的无条件跳转指令SJMP,跳转目标地址是这条代码本身。
我在调试的时候通过图3的代码,导致调用串口3发送函数主线程就死机,我觉得这应该是编译bug吧,不至于说交换了一个判断位置,导致原本的条件跳转汇编直接变成了无条件跳转到自身。
这种bug我不知道在哪些地方还有,具体什么时候才会产生还尚未明确。
图1.正常情况代码
图2.图1对应的汇编代码
图3.调换while顺序的代码
图4.代码对对应的汇编
尊敬的用户:
您好,感谢您对STC32系列单片机开发过程中遇到的问题进行详细描述。我们非常重视您的反馈,并已针对您提出的问题进行了深入分析。
根据您提供的代码及对应的汇编代码对比,您指出在调换while(uart3busy == 1)语句位置后,该条件判断被编译为无条件跳转指令(SJMP),导致程序陷入死循环。这一现象确实不符合常规的编译逻辑,可能与编译器在特定条件下对代码结构的优化策略有关。
一、问题分析
1. 正常情况下的条件判断(图1)
在图1中,while(uart3busy == 1)语句被正确地翻译为条件跳转指令(如JZ或JC),程序会根据uart3busy的状态决定是否继续循环。这种情况下,程序逻辑清晰,符合预期行为。
2. 调换顺序后的异常情况(图3)
在图3中,尽管代码逻辑未发生本质变化,但编译器却将该条件判断直接转换为无条件跳转指令(SJMP),并跳转至自身,形成死循环。这表明编译器可能在某些条件下误判了代码结构,或者对条件表达式进行了不恰当的优化。
二、可能原因推测
1. 编译器优化策略问题
部分编译器在优化阶段会对代码进行重构,以提升执行效率。如果编译器未能正确识别while(uart3busy == 1)的逻辑意义,可能会将其误判为“永远为真”的表达式,从而生成无条件跳转指令。
2. 变量类型或作用域问题
若uart3busy变量未被正确声明为volatile类型,编译器可能认为其值不会在运行时发生变化,进而对条件判断进行静态优化,导致逻辑错误。
3. 代码结构影响编译结果
在某些情况下,代码的书写顺序可能影响编译器对逻辑的解析。例如,若while语句前后缺乏足够的上下文信息,可能导致编译器无法准确推断其意图。
三、建议与解决方案
1. 检查变量声明
确保uart3busy变量被声明为volatile,以防止编译器对其值进行不必要的优化。
c
volatile unsigned char uart3busy;
2. 避免过于复杂的条件判断
如果可能,尽量简化条件判断逻辑,确保编译器能够准确识别其语义。
3. 更新编译器版本
您所使用的编译器版本可能存在已知的优化缺陷。建议升级至最新版本,以获取更稳定的编译结果。
4. 使用调试工具辅助排查
利用调试器查看uart3busy的实际值变化,确认其是否按照预期工作。同时,可对比不同编译选项下的汇编输出,进一步定位问题根源。
四、后续跟进
我们已将此问题提交至研发团队,将对相关编译器行为进行深入研究,并评估是否需要在后续版本中进行修复或优化。若您愿意,欢迎提供更多的测试案例和编译日志,以便我们更快定位问题。
再次感谢您对我们产品的关注与支持。我们将持续致力于提升产品的稳定性和可靠性,为开发者提供更加优质的开发体验。
如有其他技术问题,欢迎随时联系。
此致
敬礼!
国芯人工智能技术支持团队
2025年4月5日
[本文内容由国芯人工智能辅助生成,仅供参考]
用这个程序,实际测试下
#include <STC32G.H> //包含STC32G的头文件
#include "intrins.h" //使用_nop_()函数所必须要包含的头文件,
//否则延时函数中调用的_nop_()函数没有被头文件引用过来,
//会导致编译器找不到这个而函数而报错。
unsigned char int0_flag = 0; //定义1个位变量,INT0事件位变量标志,记录INT0已产生中断
// 供主循环查询INT0是否已产生中断,在主循环中处理INT0的中断事件任务,不堵塞其他中断
unsigned char int1_flag = 0; //定义1个位变量,INT1事件位变量标志,记录INT1已产生中断
// 供主循环查询INT1是否已产生中断,在主循环中处理INT1的中断事件任务,不堵塞其他中断
unsigned char int2_flag = 0; //定义1个位变量,INT2事件位变量标志,记录INT2已产生中断
// 供主循环查询INT2是否已产生中断,在主循环中处理INT2的中断事件任务,不堵塞其他中断
unsigned char int3_flag = 0; //定义1个位变量,INT3事件位变量标志,记录INT3已产生中断
// 供主循环查询INT3是否已产生中断,在主循环中处理INT3的中断事件任务,不堵塞其他中断
unsigned char t0_flag = 0; //定义1个位变量,T0事件位变量标志,记录定时器0已产生中断
// 供主循环查询定时器0是否已产生中断,在主循环中处理定时器0的中断事件任务,不堵塞其他中断
unsigned char t1_flag = 0; //定义1个位变量,T1事件位变量标志,记录定时器1已产生中断
// 供主循环查询定时器1是否已产生中断,在主循环中处理定时器1的中断事件任务,不堵塞其他中断
unsigned char t3_flag = 0; //定义1个位变量,T3事件位变量标志,记录定时器3已产生中断
// 供主循环查询定时器3是否已产生中断,在主循环中处理定时器3的中断事件任务,不堵塞其他中断
unsigned char t4_flag = 0; //定义1个位变量,T4事件位变量标志,记录定时器4已产生中断
// 供主循环查询定时器4是否已产生中断,在主循环中处理定时器4的中断事件任务,不堵塞其他中断
unsigned char uart1_txflag = 0; //定义1个位变量,UART1事件位变量标志,记录UART1已产生发送中断
// 供主循环查询UART1是否已产生发送中断,在主循环中处理UART1的中断事件任务,不堵塞其他中断
unsigned char uart1_rxflag = 0; //定义1个位变量,UART1事件位变量标志,记录UART1已产生接收中断
// 供主循环查询UART1是否已产生接收中断,在主循环中处理UART1的中断事件任务,不堵塞其他中断
unsigned char uart2_txflag = 0; //定义1个位变量,UART2事件位变量标志,记录UART2已产生发送中断
// 供主循环查询UART2是否已产生发送中断,在主循环中处理UART2的中断事件任务,不堵塞其他中断
unsigned char uart2_rxflag = 0; //定义1个位变量,UART2事件位变量标志,记录UART2已产生接收中断
// 供主循环查询UART2是否已产生接收中断,在主循环中处理UART2的中断事件任务,不堵塞其他中断
unsigned char uart3_txflag = 0; //定义1个位变量,UART3事件位变量标志,记录UART3已产生发送中断
// 供主循环查询UART3是否已产生发送中断,在主循环中处理UART3的中断事件任务,不堵塞其他中断
unsigned char uart3_rxflag = 0; //定义1个位变量,UART3事件位变量标志,记录UART3已产生接收中断
// 供主循环查询UART3是否已产生接收中断,在主循环中处理UART3的中断事件任务,不堵塞其他中断
unsigned char uart4_txflag = 0; //定义1个位变量,UART4事件位变量标志,记录UART4已产生发送中断
// 供主循环查询UART4是否已产生发送中断,在主循环中处理UART1的中断事件任务,不堵塞其他中断
unsigned char uart4_rxflag = 0; //定义1个位变量,UART4事件位变量标志,记录UART4已产生接收中断
// 供主循环查询UART4是否已产生接收中断,在主循环中处理UART4的中断事件任务,不堵塞其他中断
void Timer0_Init(void) //定时器1初始化,2秒@24MHz
{
TM0PS = 0x3D; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
AUXR &= 0x7F; //定时器时钟12T模式
TMOD &= 0xF0; //设置定时器模式
TL0 = 0xFC; //设置定时初始值
TH0 = 0x03; //设置定时初始值
TF0 = 0; //清除TF0标志
TR0 = 1; //定时器0开始计时
ET0 = 1; //使能定时器0中断
}
void Timer1_Init(void) //定时器1初始化,500毫秒@24MHz
{
TM1PS = 0x0F; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
AUXR &= 0xBF; //定时器时钟12T模式
TMOD &= 0x0F; //设置定时器模式
TL1 = 0xDC; //设置定时初始值
TH1 = 0x0B; //设置定时初始值
TF1 = 0; //清除TF1标志
TR1 = 1; //定时器1开始计时
ET1 = 1; //使能定时器1中断
}
void Timer3_Init(void) //100毫秒@24MHz
{
TM3PS = 0x24; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
T4T3M |= 0x02; //定时器时钟1T模式
T3L = 0x9F; //设置定时初始值
T3H = 0x02; //设置定时初始值
T4T3M |= 0x08; //定时器3开始计时
IE2 |= 0x20; //使能定时器3中断
}
void Timer4_Init(void) //200毫秒@24MHz
{
TM4PS = 0x49; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
T4T3M |= 0x20; //定时器时钟1T模式
T4L = 0x9F; //设置定时初始值
T4H = 0x02; //设置定时初始值
T4T3M |= 0x80; //定时器4开始计时
IE2 |= 0x40; //使能定时器4中断
}
void Uart1_Init(void) //115200bps@24MHz
{
SCON = 0x50; //8位数据,可变波特率
AUXR |= 0x01; //串口1选择定时器2为波特率发生器
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xCC; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
ES = 1; //使能串口1中断
}
void Uart2_Init(void) //115200bps@24MHz
{
S2CON = 0x50; //8位数据,可变波特率
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xCC; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
IE2 |= 0x01; //使能串口2中断
}
void Uart3_Init(void) //115200bps@24MHz
{
S3CON = 0x10; //8位数据,可变波特率
S3CON &= 0xBF; //串口3选择定时器2为波特率发生器
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xCC; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
IE2 |= 0x08; //使能串口3中断
}
void Uart4_Init(void) //115200bps@24MHz
{
S4CON = 0x10; //8位数据,可变波特率
S4CON &= 0xBF; //串口4选择定时器2为波特率发生器
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xCC; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
IE2 |= 0x10; //使能串口4中断
}
void main (void)
{
EAXFR = 1; //允许访问扩展的特殊寄存器,XFR
WTST = 0; //设置取程序代码等待时间,赋值为0表示不等待,程序以最快速度运行
CKCON = 0; //设置访问片内的xdata速度,赋值为0表示用最快速度访问,不增加额外的等待时间
P0M0 = 0x00; P0M1 = 0x00; //设置 P0 口为准双向口模式
P1M0 = 0x00; P1M1 = 0x00; //设置 P1 口为准双向口模式
P2M0 = 0x00; P2M1 = 0x00; //设置 P2 口为准双向口模式
P3M0 = 0x00; P3M1 = 0x00; //设置 P3 口为准双向口模式
P3M0 = 0x00; P3M1 = 0x0c; //P32、P33设置为高阻输入(需要同步开启上拉电阻)
P4M0 = 0x00; P4M1 = 0x00; //设置 P4 口为准双向口模式
P5M0 = 0x00; P5M1 = 0x00; //设置 P5 口为准双向口模式
P6M0 = 0x00; P6M1 = 0x00; //设置 P6 口为准双向口模式
P7M0 = 0x00; P7M1 = 0x00; //设置 P7 口为准双向口模式
P3PU = 0x0c; //P32、P33打开上拉电阻
int0_flag = 0; //初始化用户标志位
int1_flag = 0; //初始化用户标志位
int2_flag = 0; //初始化用户标志位
int3_flag = 0; //初始化用户标志位
t0_flag = 0; //初始化用户标志位
t1_flag = 0; //初始化用户标志位
t3_flag = 0; //初始化用户标志位
t4_flag = 0; //初始化用户标志位
uart1_txflag = 0; //初始化用户标志位
uart1_rxflag = 0; //初始化用户标志位
uart2_txflag = 0; //初始化用户标志位
uart2_rxflag = 0; //初始化用户标志位
uart3_txflag = 0; //初始化用户标志位
uart3_rxflag = 0; //初始化用户标志位
uart4_txflag = 0; //初始化用户标志位
uart4_rxflag = 0; //初始化用户标志位
IT0 = 0; //使能 INT0 上升沿和下降沿中断
// IT0 = 1; //使能 INT0 下降沿中断
EX0 = 1; //使能 INT0 中断
IE0 = 0; //清INT0中断标志
// IT1 = 0; //使能 INT1 上升沿和下降沿中断
IT1 = 1; //使能 INT1 下降沿中断
EX1 = 1; //使能 INT1 中断
IE1 = 0; //清INT1中断标志
INTCLKO |= 0x10; //使能INT2中断
INTCLKO |= 0x20; //使能INT3中断
Timer0_Init(); //调用定时器0初始化函数
Timer1_Init(); //调用定时器1初始化函数
Timer3_Init(); //调用定时器0初始化函数
Timer4_Init(); //调用定时器1初始化函数
Uart1_Init(); //调用UART1初始化函数
Uart2_Init(); //调用UART2初始化函数
Uart3_Init(); //调用UART3初始化函数
Uart4_Init(); //调用UART4初始化函数
EA = 1; //总中断允许位打开
P40 = 0; //打开LED灯供电
while(1) //主循环中查询需要处理的各种事件
{
/*本演示程序中,主循环查询各中断有无需要继续处理的事件的次序,
依次是 INTx/TIMERx/UARTx, 用户可以自己根据实际情况,
调整查询各中断有无需要继续处理的事件的优先次序*/
//查询外部中断0事件
if(int0_flag) //主循环中查询,INT0是否已产生中断,是否有需要处理的INT 0事件
{
int0_flag = 0; //清0,INT0事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询外部中断1事件
if(int1_flag) //主循环中查询,INT1是否已产生中断,是否有需要处理的INT1事件
{
int1_flag = 0; //清0,INT1事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询外部中断2事件
if(int2_flag) //主循环中查询,INT2是否已产生中断,是否有需要处理的INT2事件
{
int2_flag = 0; //清0,INT2事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询外部中断3事件
if(int3_flag) //主循环中查询,INT3是否已产生中断,是否有需要处理的INT3事件
{
int3_flag = 0; //清0,INT3事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器0中断事件
if(t0_flag) //主循环中查询,定时器0是否已产生中断,是否有需要处理的定时器0事件
{
t0_flag = 0; //清0,T0事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器1中断事件
if(t1_flag) //主循环中查询,定时器1是否已产生中断,是否有需要处理的定时器1事件
{
t1_flag = 0; //清0,T1事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器3中断事件
if(t3_flag) //主循环中查询,定时器3是否已产生中断,是否有需要处理的定时器3事件
{
t3_flag = 0; //清0,T3事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器4中断事件
if(t4_flag) //主循环中查询,定时器4是否已产生中断,是否有需要处理的定时器4事件
{
t4_flag = 0; //清0,T4事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口1中断事件
if(uart1_txflag) //主循环中查询,UART1是否已产生发送中断,是否有需要处理的UART1发送事件
{
uart1_txflag = 0; //清0,UART1发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart1_rxflag) //主循环中查询,UART1是否已产生接收中断,是否有需要处理的UART1接收事件
{
uart1_rxflag = 0; //清0,UART1接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口2中断事件
if(uart2_txflag) //主循环中查询,UART2是否已产生发送中断,是否有需要处理的UART2发送事件
{
uart2_txflag = 0; //清0,UART2发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart2_rxflag) //主循环中查询,UART2是否已产生接收中断,是否有需要处理的UART2接收事件
{
uart2_rxflag = 0; //清0,UART2接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口3中断事件
if(uart3_txflag) //主循环中查询,UART3是否已产生发送中断,是否有需要处理的UART3发送事件
{
uart3_txflag = 0; //清0,UART3发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart3_rxflag) //主循环中查询,UART3是否已产生接收中断,是否有需要处理的UART3接收事件
{
uart3_rxflag = 0; //清0,UART3接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口4中断事件
if(uart4_txflag) //主循环中查询,UART4是否已产生发送中断,是否有需要处理的UART4发送事件
{
uart4_txflag = 0; //清0,UART4发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart4_rxflag) //主循环中查询,UART4是否已产生接收中断,是否有需要处理的UART4接收事件
{
uart4_rxflag = 0; //清0,UART4接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
}
}
void int0_isr(void) interrupt INT0_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int0_flag = 1; // int0_flag置1是通知主循环处理部分INT0中断事件不需要特急处理的任务
//置1,记录INT0已产生中断,供主循环查询判断有无需处理的INT0任务
if(INT0) //边沿中断,进入后再次判断电平从而判断是什么样的电平
{
_nop_(); //判断为高电平,则当前为上升沿
_nop_(); //可以在这里插入断点进行观察现象
}
else
{
_nop_(); //判断为低电平,则当前为下降沿
_nop_(); //可以在这里插入断点进行观察现象
}
}
//INT0中断服务程序,INT0_VECTOR在STC32G.H头文件中已宏定义为0
void int1_isr(void) interrupt INT1_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int1_flag = 1; // int1_flag置1是通知主循环处理部分INT1中断事件不需要特急处理的任务
}
//INT1中断服务程序,INT1_VECTOR在STC32G.H头文件中已宏定义为2
void int2_isr(void) interrupt INT2_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int2_flag = 1; // int2_flag置1是通知主循环处理部分INT2中断事件不需要特急处理的任务
}
//INT2中断服务程序,INT2_VECTOR在STC32G.H头文件中已宏定义为10
void int3_isr(void) interrupt INT3_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int3_flag = 1; // int3_flag置1是通知主循环处理部分INT3中断事件不需要特急处理的任务
}
//INT3中断服务程序,INT3_VECTOR在STC32G.H头文件中已宏定义为11
void Timer0_Isr(void) interrupt TMR0_VECTOR //定时器0中断服务程序
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t0_flag = 1; // t0_flag置1是通知主循环处理部分T0中断事件不需要特急处理的任务
//置1,记录定时器0已产生中断,供主循环查询判断有无需处理的定时器0任务
}
//定时器0中断服务程序,TMR0_VECTOR在STC32G.H头文件中已宏定义为1
void Timer1_Isr(void) interrupt TMR1_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t1_flag = 1; // t1_flag置1是通知主循环处理部分T1中断事件不需要特急处理的任务
//置1,记录定时器1已产生中断,供主循环查询判断有无需处理的定时器1任务
}
//定时器1中断服务程序,TMR1_VECTOR在STC32G.H头文件中已宏定义为3
void Timer3_Isr(void) interrupt TMR3_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t3_flag = 1; // t3_flag置1是通知主循环处理部分T3中断事件不需要特急处理的任务
//置1,记录定时器3已产生中断,供主循环查询判断有无需处理的定时器1任务
}
//定时器3中断服务程序,TMR3_VECTOR在STC32G.H头文件中已宏定义为19
void Timer4_Isr(void) interrupt TMR4_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t4_flag = 1; // t1_flag置4是通知主循环处理部分T4中断事件不需要特急处理的任务
//置1,记录定时器4已产生中断,供主循环查询判断有无需处理的定时器1任务
}
//定时器4中断服务程序,TMR4_VECTOR在STC32G.H头文件中已宏定义为20
void Uart1_Isr(void) interrupt UART1_VECTOR
{
if (TI) //检测串口1发送中断
{
TI = 0; //清除串口1发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart1_txflag = 1; // uart1_txflag置1是通知主循环处理部分串口1发送中断事件不需要特急处理的任务
//置1,记录UART1已产生发送中断,供主循环查询判断有无需处理的UART1发送任务
}
if (RI) //检测串口1接收中断
{
RI = 0; //清除串口1接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart1_rxflag = 1; // uart1_rxflag置1是通知主循环处理部分串口1接收中断事件不需要特急处理的任务
//置1,记录UART1已产生接收中断,供主循环查询判断有无需处理的UART1接收任务
}
}
//UART1中断服务程序,UART1_VECTOR在STC32G.H头文件中已宏定义为4
void Uart2_Isr(void) interrupt UART2_VECTOR
{
if (S2CON & 0x02) //检测串口2发送中断
{
S2CON &= ~0x02; //清除串口2发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart2_txflag = 1; // uart2_txflag置1是通知主循环处理部分串口2发送中断事件不需要特急处理的任务
//置1,记录UART2已产生发送中断,供主循环查询判断有无需处理的UART2发送任务
}
if (S2CON & 0x01) //检测串口2接收中断
{
S2CON &= ~0x01; //清除串口2接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart2_rxflag = 1; // uart2_rxflag置1是通知主循环处理部分串口2接收中断事件不需要特急处理的任务
//置1,记录UART2已产生接收中断,供主循环查询判断有无需处理的UART2接收任务
}
}
//UART2中断服务程序,UART2_VECTOR在STC32G.H头文件中已宏定义为8
void Uart3_Isr(void) interrupt UART3_VECTOR
{
if (S3CON & 0x02) //检测串口3发送中断
{
S3CON &= ~0x02; //清除串口3发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart3_txflag = 1; // uart3_txflag置1是通知主循环处理部分串口3发送中断事件不需要特急处理的任务
//置1,记录UART3已产生发送中断,供主循环查询判断有无需处理的UART3发送任务
}
if (S3CON & 0x01) //检测串口3接收中断
{
S3CON &= ~0x01; //清除串口3接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart3_rxflag = 1; // uart3_rxflag置1是通知主循环处理部分串口3接收中断事件不需要特急处理的任务
//置1,记录UART3已产生接收中断,供主循环查询判断有无需处理的UART3接收任务
}
}
//UART3中断服务程序,UART3_VECTOR在STC32G.H头文件中已宏定义为17
void Uart4_Isr(void) interrupt UART4_VECTOR
{
if (S4CON & 0x02) //检测串口4发送中断
{
S4CON &= ~0x02; //清除串口4发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart4_txflag = 1; // uart4_txflag置1是通知主循环处理部分串口4发送中断事件不需要特急处理的任务
//置1,记录UART4已产生发送中断,供主循环查询判断有无需处理的UART4发送任务
}
if (S4CON & 0x01) //检测串口4接收中断
{
S4CON &= ~0x01; //清除串口4接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart4_rxflag = 1; // uart4_rxflag置1是通知主循环处理部分串口4接收中断事件不需要特急处理的任务
//置1,记录UART4已产生接收中断,供主循环查询判断有无需处理的UART4接收任务
}
}
//UART4中断服务程序,UART4_VECTOR在STC32G.H头文件中已宏定义为18
4组串口UART使用DMA收发 @32G系列,易用,高效,稳定 !精品实战代码 - DMA支持: QSPI, SPI, I2S, I2C, 4组串口, i8080/MC6800-TFT 国芯人工智能技术交流网站 - AI32位8051交流社区
像你这种情况是编译器优化导致的
解决方法1:将编译器优化等级降低
(测试将优化降到5或者更低,就会编译正确)
解决方法2:给变量增加“volatile”属性
下图是未增加volatile属性的,while (busy == 1)语句会被优化掉
下图是增加了volatile属性的,while (busy == 1)语句编译正确
代码编写建议:
对于主循环代码中设置初始值,在中断函数中进行修改,然后在主函数中进行判断的这类变量,必须都要增加volatile属性
否则,对于某个变量,如果刚设置为1,马上又判断变量是否为1,编译器会认为判断语句是多余的,判断语句可能会被优化掉
代码编写建议:
对于主循环代码中设置初始值,在中断函数中进行修改,然后在主函数中进行判断的这类变量,必须都要增加volatile属性
否则,对于某个变量,如果刚设置为1,马上又判断变量是否为1,编译器会认为判断语句是多余的,判断语句可能会被优化掉
我以前遇到过语句在这个位置编译被优化掉,前移几个语句或者后移几个语句就OK
页:
[1]